MIT Logo

Softwares

We create machine-learning-based open-source packages for neutron, X-ray, and electron scattering and spectroscopy community. 

Diffraction 

Reflectometry 

Spectroscopy 

Inelastic Scattering 

Thermal transport analyzer from time-resolved diffraction 

Input: Time-dependent diffraction intensities, heat capacities, phonon group velocities of each layer in a multi-layered sample. 

Output: phonon-frequecny-dependent phonon relaxation time and interfacial phonon transmittance. 

Machine learning: Adjoint-state neural diffential equation. 

Reference: “Panoramic mapping of phonon transport from ultrafast electron diffraction and machine learning,” Advanced Materials 35, 2206997 (2023)

Details are in the caption following the image

Magnetism classifier from crystal structures

Input: Crystal structure data (e.g. cif file)  

Output: The class of magnetism of the crystal (ferromagnetism, antiferromagnetism, or non-magnetism) 

Machine learning: Equivariant graph nerual network. 

Reference:  “Machine Learning Magnetism Classifiers from Atomic Coordinates,” iScience: Cell Press 25, 105192 (2022).

Polarized neutron reflectometry data fitting 

Input: Reflectometry data (either unpolarized or polarized) of a multilayered sample

Output: The sturcture information of the sample (thickness, roughness, density, and magentism of each layer)

Machine learning: Variational autoencoder.

Reference: “Elucidating proximity magnetism through polarized neutron reflectometry and machine learning”, App. Phys. Rev. 9, 011421 (2022).

Topology classifier from X-ray absorption

Input: X-ray absorption data 

Output: The class of band topology (topologically trivial, topological insulator, or topological semimetals) 

Machine learning: Convolutional neural networks.

Reference: “Machine learning spectral indicators of topology”, Advanced Materials 34, 2204113 (2022).

Majorana zero mode predictor from scanning tunneling spectroscopy 

Input: Zero-bias-peak from scanning tunneling spectroscopy (STS), either 1D or 2D with Zeeman field

Output: The prediction if the peak indicates it is from Majorana zero modes, Andreev bound states, or other topological trivial states. 

Machine learning: Topological data analysis and gredient boosting.

Reference: “Machine Learning Detection of Majorana Zero Modes from Zero Bias Peak Measurements,” arXiv:2310.18439 (2023).

Phonon density-of-states predictor from crystal structures

Input: Crystal structure data (e.g. cif file)  

Output: The curve of phonon density-of-states. 

Machine learning: Equivariant graph neural networks.

Reference: “Direct prediction of phonon density of states with Euclidean neural networks”, Adv. Sci. 8, 2004214 (2021).

Phonon dispersion relation predictor from crystal structures

Input: Crystal structure data (e.g. cif file) and pathways

Output: The full 3N phonon bands in the Brioullin zone. 

Machine learning: Virtual-node graph neural networks.

Reference: “Virtual Node Graph Neural Network for Full Phonon Prediction,” arXiv:2301.02197 (2023).